About Complex Structures in Conformal Tractor Calculus

نویسنده

  • FELIPE LEITNER
چکیده

The aim of this paper is to describe the geometry of conformal structures in Lorentzian signature, which admit a lightlike conformal Killing vector field whose corresponding adjoint tractor acts as complex structure on the standard tractor bundle of conformal geometry. Key to the treatment of this problem is CR-geometry and the Fefferman construction. In fact, we will consider here partially integrable CR-structures and a slightly generalised Fefferman construction for these, which we call the l-Fefferman construction. We show that a certain class of l-Fefferman metrics on partially integrable CRspaces provides all solutions to our problem concerning the complex structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standard Tractors and the Conformal Ambient Metric Construction

In this paper we relate the Fefferman–Graham ambient metric construction for conformal manifolds to the approach to conformal geometry via the canonical Cartan connection. We show that from any ambient metric that satisfies a weakening of the usual normalisation condition, one can construct the conformal standard tractor bundle and the normal standard tractor connection, which are equivalent to...

متن کامل

Tractor Calculi for Parabolic Geometries

Parabolic geometries may be considered as curved analogues of the homogeneous spaces G/P where G is a semisimple Lie group and P ⊂ G a parabolic subgroup. Conformal geometries and CR geometries are examples of such structures. We present a uniform description of a calculus, called tractor calculus, based on natural bundles with canonical linear connections for all parabolic geometries. It is sh...

متن کامل

A REMARK ON CONFORMAL SU(p, q)-HOLONOMY

If the conformal holonomy group Hol(T) of a simply connected space with conformal structure of signature (2p−1, 2q−1) is reduced to U(p, q) then the conformal holonomy is already contained in the special unitary group SU(p, q). We present two different proofs of this statement, one using conformal tractor calculus and an alternative proof using Sparling’s characterisation of Fefferman metrics.

متن کامل

An extension theorem for conformal gauge singularities

We analyse conformal gauge, or isotropic, singularities in cosmological models in general relativity. Using the calculus of tractors, we find conditions in terms of tractor curvature for a local extension of the conformal structure through a cosmological singularity and prove a local extension theorem along a congruence of time-like conformal geodesics.

متن کامل

About Twistor Spinors with Zero in Lorentzian Geometry

We describe the local conformal geometry of a Lorentzian spin manifold (M, g) admitting a twistor spinor φ with zero. Moreover, we describe the shape of the zero set of φ. If φ has isolated zeros then the metric g is locally conformally equivalent to a static monopole. In the other case the zero set consists of null geodesic(s) and g is locally conformally equivalent to a Brinkmann metric. Our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005